Support for Targeted Individuals :: Citizens Against Harmful Technology | MyNewsletterBuilder

Do you have V2K?  Do you have implants? TI’s are already connected to the Internet of Things- Integrated.
Internet of Things and Body area network-an integrated future

Modern technological advancement in sensors technology, miniaturization of devices and wireless networking facilitated the design and proliferation of wireless sensor networks by making it capable to monitor independently and controlling the ambience. One of the most important applications of sensor networks is for human health monitoring using minuscule wireless sensors, placed strategically on the human body, constitute a wireless network over the human body, termed as wireless body area network (WBAN) capable of administering various crucial implications and provides feedback on real-time basis to the user and supervising medical personnel. The Internet of Things (IoT) can be measured as the futuristic appraisal of the internet that realizes machine-to-machine learning and communication. As a result, IoT offers connectivity for everyone and everything. These two networks in integration provides connectivity between everything and anything. This paper is a study on integrated IoT and WBAN. 
Interfacing human and computer with wireless body area sensor networks: the WiMoCA solution


Wireless Body Area Sensor Networks (WBASN) are an emerging technology enabling the design of natural human–computer interfaces (HCI). Automatic recognition of human motion, gestures, and activities is studied in several contexts. For example, mobile computing technology is being considered as a replacement of traditional input systems. Moreover, body posture and activity monitoring can be used for entertainment and health-care applications. However, until now, little work has been done to develop flexible and efficient WBASN solutions suitable for a wide range of applications. Their requirements pose new challenges for sensor network designs, such as optimizing traditional solutions for use as environmental monitoring-like applications and developing on-the-field stress tests. In this paper, we demonstrate the flexibility of a custom-designed WBASN called WiMoCA with respect to a wide range of posture and activity recognition applications by means of practical implementation and on-the-field testing. Nodes of the network mounted on different parts of the human body exploit tri-axial accelerometers to detect its movements. The advanced digital Micro-electro-mechanical system (MEMS) based inertial sensor has been chosen for WiMoCA because it demonstrated high flexibility of use in many different situations, providing the chance to exploit both static and dynamic acceleration components for different purposes. Furthermore, the sensibility and accuracy of the sensing element is perfectly adequate for monitoring human movement, while keeping cost low and size compact, thus meeting our requirements. We implemented three types of applications, stressing the WBASN in many aspects. In fact, they are characterized by different requirements in terms of accuracy, timeliness, and computation distributed on sensing nodes. For each application, we describe its implementation, and we discuss results about performance and power consumption.

— Read on

Published by lslolo

I am a targeted Individual in the county of KANKAKEE Illinois since 2015- current. I became a victim via my employer which is the state of Illinois Department of Human Services.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: