RAND INTELLECTUAL PROPERTY PDF

RAND INTELLECTUAL PROPERTY PDF.

RAND INTELLECTUAL PROPERTY PDF

Click to access RAND_TR303.pdf

rganization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world.
Support RAND
Purchase this document Browse Books & Publications Make a charitable contribution
For More Information
Visit RAND at http://www.rand.org
Explore RAND National Security Research Division View document details
Limited Electronic Distribution Rights
This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use.
This PDF document was made available from http://www.rand.org as a public service of the RAND Corporation.

This product is part of the RAND Corporation technical rep

THE ARTS CHILD POLICY CIVIL JUSTICE EDUCATION ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY SUBSTANCE ABUSE TERRORISM AND
HOMELAND SECURITY
TRANSPORTATION AND INFRASTRUCTURE
WORKFORCE AND WORKPLACE
Jump down to document6
The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world.
Support RAND
Purchase this document Browse Books & Publications Make a charitable contribution
For More Information
Visit RAND at http://www.rand.org
Explore RAND National Security Research Division View document details
Limited Electronic Distribution Rights
This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial This product is part of the RAND Corporation technical report series. Reports may include research findings on a specific topic that is limited in scope; present discus- sions of the methodology employed in research; provide literature reviews, survey instruments, modeling exercises, guidelines for practitioners and research profes- sionals, and supporting documentation; or deliver preliminary findings. All RAND reports undergo rigorous peer review to ensure that they meet high standards for re- search quality and objectivity.

The Global Technology Revolution 2020, In-Depth Analyses
Bio/Nano/Materials/Information Trends, Drivers, Barriers, and Social Implications
Richard Silberglitt, Philip S. Antón, David R. Howell, Anny Wong
with
Natalie Gassman, Brian A. Jackson, Eric Landree, Shari Lawrence Pfleeger, Elaine M. Newton, and Felicia Wu
Prepared for the National Intelligence Council Approved for public release; distribution unlimited.

The research reported here was sponsored by the National Intelligence Council.
Library of Congress Cataloging-in-Publication Data is available for this document. ISBN 0-8330-3975-X
The RAND Corporation is a nonprofit research organization providing objective analysis and effective solutions that address the challenges facing the public and private sectors around the world. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors.
R® is a registered trademark.
© Copyright 2006 RAND Corporation
All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND.
Published 2006 by the RAND Corporation
1776 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 1200 South Hayes Street, Arlington, VA 22202-5050
4570 Fifth Avenue, Suite 600, Pittsburgh, PA 15213
RAND URL: http://www.rand.org/
To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002;
Fax: (310) 451-6915; Email: order@rand.org

Preface
Various technologies—including biotechnology, nanotechnology (broadly defined), materials technology, and information technology—have the potential for significant and dominant global impacts by 2020. This report is based on a set of foresights (not predictions or forecasts)1 into global technology trends in the abovementioned areas and their implications for the world in the year 2020. These foresights were complemented by analysis of data on current and projected S&T capabilities, drivers, and barriers in countries across the globe.
This work was sponsored by the National Intelligence Council (NIC) to inform its publication of Mapping the Global Future: Report of the National Intelligence Council’s 2020 Project Based on Consultations with Nongovernmental Experts Around the World, December 2004. In addition, funding was provided by the Intelligence Technology Innovation Center (ITIC) and the Department of Energy. It is a follow-on report to RAND MR-1307-NIC, The Global Technology Revolution (2001), which was sponsored by the NIC to inform its 2000 document, Global Trends 2015. Global Trends 2015 and the 1996 NIC document Global Trends 2010 identified key factors that appeared poised to shape the world by 2015 and 2010, respectively.
This report should be of interest to policymakers, intelligence community analysts, technology developers, the public at large, and regional experts interested in potential global technology trends and their broader social effects.
This project was conducted jointly in the Intelligence Policy Center and the Acquisition and Technology Policy Center of the RAND National Security Research Division (NSRD). For further information regarding this report, contact its authors or the Intelligence Policy Center Director, John Parachini. NSRD conducts research and analysis for the Office of the Secretary of Defense, the Joint Staff, the Unified Combatant Commands, the Department of the Navy, the Marine Corps, the defense agencies, and the Defense Intelligence Community, allied foreign governments, and foundations. NSRD is a division of RAND, a non-profit corporation chartered in the public interest to conduct policy analysis (see http://www.rand.org/NSRD/).
For more information on RAND’s Acquisition and Technology Policy Center, contact the Director, Philip Antón. He can be reached by email at atpc- director@rand.org; by phone at 310-393-0411, extension 7798; or by mail at RAND Corporation, 1776 Main Street, Santa Monica, CA 90407-2138.
For more information on RAND’s Intelligence Policy Center, contact the Director, John Parachini. He can be reached by email at john_parachini@rand.org; by phone at 703-413-1100, extension 5579; or by mail at RAND Corporation, 1200 South Hayes Street, Arlington, VA 22202-5050.
More information about RAND is available at http://www.rand.org.
1 A foresight activity examines trends and indicators of possible future developments without predicting or describing a single state or timeline and is thus distinct from a forecast or scenario development activity (Salo and Cuhls, 2003; Martin and Irvine, 1989; Larson, 1999; Coates, 1985).
iii

Foreword
The National Intelligence Council (NIC) sponsored this study by The RAND Corporation to inform the NIC’s 2020 project2 and help provide US policymakers with a view of how world developments could evolve, identifying opportunities and potentially negative developments that might warrant policy action. From June 2004 through August 2005, RAND undertook the challenging task of identifying technologies and applications that have the potential for significant and dominant global impacts by 2020.
As RAND found in its prior study for the NIC, The Global Technology Revolution (2001), technology will continue to accelerate and integrate developments from multiple scientific disciplines in a “convergence” that will have profound effects on society. RAND’s new study, however, has delved further into social impacts and concluded that:
• Regional and country-specific differences in social need and S&T capabilities are resulting in differences in how technology is revolutionizing human affairs around the world,
• Regional differences in public opinion and issues may strongly influence technology implementation,
• Maintaining S&T capacity requires consideration and action across a large number of social capabilities and stability dimensions,
• Capacity building is an essential component of development, and
• Public policy issues relating to some technology applications will engender strong
public debate.
The implications of these findings are important to US policymakers. For example, while the United States remains a leader in S&T capability and innovation, it is not the sole leader and thus will not always dominate every technical area. Also, many technologies will evolve globally in ways that differ from their evolution in the United States, so we cannot merely apply a US view as a cookie cutter to understanding how technology will change the world. In addition, US understanding of potential technological threats from foreign powers requires a broad understanding not just of S&T skills and capabilities but also the institutional, human, and physical capacity to exploit technological opportunities. Finally, innovative combinations of new and existing technologies can help to meet region-specific needs despite their lack of use in the US sector.
2 See http://www.cia.gov/nic/NIC_2020_project.html for further information on the NIC 2020 Project and its final report, Mapping the Global Future.
v

I commend this report to you as a resource for understanding how S&T and social issues interact and depend not only on technological advances but also on the broader capabilities of countries that seek development and economic rewards through S&T exploitation. As important as S&T is today to the United States and the world, it will become even more important in the future.
Dr. Lawrence K. Gershwin,
National Intelligence Officer for Science and Technology Office of the Director of National Intelligence.

ontents
Preface……………………………………………………………………………………………………………….. iii Foreword …………………………………………………………………………………………………………….. v Figures……………………………………………………………………………………………………………… xiii Tables……………………………………………………………………………………………………………….. xv Summary …………………………………………………………………………………………………………. xvii
Technology Applications and Their Impact on Society ……………………………………… xvii Regional and International Effects…………………………………………………………………….. xx Conclusions…………………………………………………………………………………………………. xxvi
Accelerated Technology Development Will Continue ………………………………….. xxvi Capability and Need Differences Are Driving Global Technology Revolution
Differences Around the World………………………………………………………………… xxvi Public Policy Issues May Strongly Influence Technology Implementation …….. xxvii Maintaining Science and Technology Capacity Requires Consideration and
Action…………………………………………………………………………………………………. xxvii Capacity Building Is an Essential Component of Development …………………….. xxvii Public Policy Issues Relating to Technology Applications Will Engender Strong
Public Debate ………………………………………………………………………………………. xxvii Acknowledgments……………………………………………………………………………………………. xxix Glossary …………………………………………………………………………………………………………. xxxi CHAPTER 1 INTRODUCTION ………………………………………………………………………….. 1
The Global Technology Revolution to 2020 ………………………………………………………… 2 Will Moore’s Law Continue Through 2020? ……………………………………………………. 4 Approach…………………………………………………………………………………………………………. 5 Technology Trend Foresight ………………………………………………………………………….. 5 International Implications………………………………………………………………………………. 7 Structure of the Report………………………………………………………………………………………. 7 CHAPTER 2 TECHNOLOGY APPLICATIONS AND THEIR EFFECTS ……………….. 9 Technology Trends and Applications ………………………………………………………………….. 9 Biotechnology Trends and Applications to 2020 ………………………………………………. 9 Nanotechnology Trends and Applications to 2020 ………………………………………….. 10 Materials Trends and Applications to 2020 ……………………………………………………. 12 Information and Communications Technology Trends and Applications to 2020 .. 14 The Integrated Effect of Technology Development …………………………………………….. 15 The Potential Effects of Technology Applications in 2020…………………………………… 15 Cheap Solar Energy Collection, Conversion, and Storage………………………………… 19
Rural Connection to Telephones and the Internet Using Wireless Communications ………………………………………………………………………………………………………………. 20 Communication Devices for Ubiquitous Information Access Anywhere, Anytime 21 Genetically Modified Crops …………………………………………………………………………. 22 Rapid Bioassays …………………………………………………………………………………………. 23 Filters and Catalysts to Enable Water Purification and Decontamination …………… 23 Targeted Drug Delivery for Tumor and Pathogen Location and Destruction………. 24
vii

Cheap Autonomous Housing………………………………………………………………………… 25 Green Manufacturing ………………………………………………………………………………….. 25 Ubiquitous Radio Frequency Identification Tagging of Commercial Products and
Individuals………………………………………………………………………………………………. 26 Hybrid Vehicles………………………………………………………………………………………….. 27 Pervasive Sensors ……………………………………………………………………………………….. 28 Tissue Engineering ……………………………………………………………………………………… 28 Improved Diagnostic and Surgical Methods …………………………………………………… 29 Wearable Computers …………………………………………………………………………………… 30 Quantum Cryptography……………………………………………………………………………….. 30 Other Technology Applications ……………………………………………………………………. 31
Summary of Technology Applications ………………………………………………………………. 33 Technically Feasible Technology Applications That Are Likely to Be Implemented
Widely……………………………………………………………………………………………………. 35 Technically Feasible Technology Applications That Are Less Likely to Be
Implemented Widely………………………………………………………………………………… 35 Technology Applications for Which Technical Feasibility Is Uncertain in 2020 but
That Would Be Implemented Widely If Available……………………………………….. 36 Technology Applications for Which Technical Feasibility Is Uncertain in 2020 and
That Are Less Likely to Be Implemented Widely If Available………………………. 36 Technology Applications That Are Unlikely to Be Technically Feasible in 2020 but
That Would Be Implemented Widely If Available……………………………………….. 37 Technology Applications That Are Unlikely to Be Technically Feasible in 2020 and
That Are Less Likely to Be Implemented Widely If Available………………………. 37 CHAPTER 3 INTERNATIONAL VARIATION IN TECHNOLOGY APPLICATIONS AND IMPLEMENTATION ………………………………………………………………………………… 39
Regional Variation of Technology Application and Implementation……………………… 39 Drivers and Barriers to Implementing Technology Applications…………………………… 41 Cost and Financing……………………………………………………………………………………… 42 Laws and Policies……………………………………………………………………………………….. 43 Social Values, Public Opinion, and Politics……………………………………………………. 44 Infrastructure ……………………………………………………………………………………………… 45 Privacy Concerns………………………………………………………………………………………… 46 Resource Use and Environmental Health……………………………………………………….. 47 R&D Investment…………………………………………………………………………………………. 48 Education and Literacy………………………………………………………………………………… 49 Population and Demographics………………………………………………………………………. 51 Governance and Stability …………………………………………………………………………….. 52 Problems and Issues and Relevant Technology Applications ……………………………….. 54
Country Capacity to Acquire Technologies and Drivers, and Barriers to Implementing Technology Applications …………………………………………………………………………………. 62 Selecting Countries for Analysis…………………………………………………………………… 64
Determining Country Capacity to Acquire Technology Applications and Their Drivers and Barriers…………………………………………………………………………………. 65
Determining Country Capacity to Implement Technology Applications Relevant to Problems and Issues………………………………………………………………………………………… 94
viii

Promote Rural Economic Development…………………………………………………………. 99 Promote Economic Growth and International Commerce ………………………………. 103 Improve Public Health……………………………………………………………………………….. 107 Improve Individual Health …………………………………………………………………………. 111 Reduce Resource Use and Improve Environmental Health …………………………….. 115 Strengthen the Military and Warfighters of the Future …………………………………… 119 Strengthen Homeland Security and Improve Public Safety …………………………….. 123 Influence Governance and Social Structure ………………………………………………….. 127
Summary of Country Capacities for Technology Implementation……………………….. 131 CHAPTER4 CONCLUSIONS………………………………………………………………………….135 Accelerated Technology Development Will Continue ……………………………………….. 135
Capability and Need Differences Are Driving Global Technology Revolution Differences Around the World………………………………………………………………………… 136 Public Policy Issues May Strongly Influence Technology Implementation…………… 136 Maintaining Science and Technology Capacity Requires Consideration and Action 137 Capacity Building Is an Essential Component of Development…………………………… 137 Public Policy Issues Relating to Technology Applications Will Engender Strong Public Debate …………………………………………………………………………………………………………. 137
APPENDIX A: BIOTECHNOLOGY, BIONANOTECHNOLOGY, AND BIOMEDICAL SCIENCE TRENDS TO 2020…………………………………………………….. 139 Biological Information: Genomics, Proteomics, and Other Technologies …………….. 140 Application of Biological Information …………………………………………………………. 141 Impacts of Increasing Information Availability …………………………………………….. 143 Genetically Modified Organisms…………………………………………………………………….. 144 Therapies and Drug Development …………………………………………………………………… 147 Reproductive Biotechnologies ………………………………………………………………………… 149 Biomedical Engineering…………………………………………………………………………………. 151 Biomimetics and Applied Biological Science …………………………………………………… 153 APPENDIX B: NANOTECHNOLOGY TRENDS TO 2020 ………………………………… 155 Nanotechnology-Enabled Sensors …………………………………………………………………… 156 Today………………………………………………………………………………………………………. 156 By 2020 (Potential Technology) …………………………………………………………………. 156 Societal Implications and Applications ………………………………………………………… 157 Nanotechnology-Enabled Power …………………………………………………………………….. 157 Today………………………………………………………………………………………………………. 159 By 2020 (Potential Technology) …………………………………………………………………. 159 Societal Implications and Applications ………………………………………………………… 159 Nanotechnology-Enabled Electronics (Integrated Circuits and Processing) ………….. 160 Today………………………………………………………………………………………………………. 162 By 2020 (Potential Technology) …………………………………………………………………. 163 Societal Implications and Applications ………………………………………………………… 163 Advances in Nanobiotechnology …………………………………………………………………….. 164 Today………………………………………………………………………………………………………. 164 By 2020 (Potential Technology) …………………………………………………………………. 165 Societal Implications and Applications ………………………………………………………… 165 Nanotechnology Manufacturing (Molecular Assembly) …………………………………….. 166
ix

Today………………………………………………………………………………………………………. 167 By 2020 (Potential Technology) …………………………………………………………………. 167 Societal Implications and Applications ………………………………………………………… 167
APPENDIX C: MATERIALS SCIENCE AND ENGINEERING TRENDS TO 2020 169 Smart Materials: Environmental Sensing and Responsive Actuation …………………… 170 Piezoelectric Materials ………………………………………………………………………………. 170 Magnetostrictive Materials…………………………………………………………………………. 171 Shape-Memory Materials …………………………………………………………………………… 171 2020 Foresight for Smart Materials……………………………………………………………… 172 Biomaterials: Integration of Inorganic and Biological Materials …………………………. 172 Tissue Engineering ……………………………………………………………………………………. 172 Bone Growth and Repair……………………………………………………………………………. 173 Novel Blood Substitute Polymer…………………………………………………………………. 173 Supramolecular Biomaterials ……………………………………………………………………… 174 2020 Foresight for Biomaterials………………………………………………………………….. 174 Nanomaterials: Tailored Functional Materials ………………………………………………….. 174 Bionanomaterials………………………………………………………………………………………. 174 Nanocomposites and Functional Nanostructures …………………………………………… 175 Filters and Catalysts: Tailored Surfaces and Pores ………………………………………… 175 2020 Foresight for Nanomaterials……………………………………………………………….. 176 Fibers, Fabrics, and Textiles: Multifunctional Capabilities…………………………………. 176 2020 Foresight for Fibers, Fabrics, and Textiles……………………………………………. 177 Organic Electronics: Flexible Conductors ………………………………………………………… 177 2020 Foresight for Organic Electronics ……………………………………………………….. 177 Manufacturing Methods: Efficient and Environmentally Friendly ………………………. 177 2020 Foresight for Manufacturing Methods …………………………………………………. 178 APPENDIX D: INFORMATION TECHNOLOGY TRENDS TO 2020…………………. 179 Introduction………………………………………………………………………………………………….. 179 Convergence of Technologies…………………………………………………………………………. 179 Data, Data Everywhere ………………………………………………………………………………….. 180 Sensors…………………………………………………………………………………………………….. 181 Biometrics ……………………………………………………………………………………………….. 181 Cameras …………………………………………………………………………………………………… 184 Global Positioning System …………………………………………………………………………. 184 Database Technology…………………………………………………………………………………….. 184 Micro and Mobile—Devices and Power Sources………………………………………………. 185 Privacy and Anonymity Tools ………………………………………………………………………… 186 2020 Foresights…………………………………………………………………………………………….. 187 Robotics…………………………………………………………………………………………………… 187 Technology and Education…………………………………………………………………………. 187 Physical Disabilities and Ailments………………………………………………………………. 187 Other Developments………………………………………………………………………………….. 187 Final Thoughts ……………………………………………………………………………………………… 188
APPENDIX E: CREATING NEW OPPORTUNITIES FOR IMPROVING EXISTING THERAPEUTICS: NANO-ENABLED DRUG DELIVERY SYSTEMS TRENDS TOWARD 2020 ……………………………………………………………………………………………….. 191
x

Summary ……………………………………………………………………………………………………… 191 Introduction………………………………………………………………………………………………….. 193 Nano-Enabled Delivery of Paclitaxel ………………………………………………………………. 194 Improving Existing Pharmaceuticals ……………………………………………………………….. 196 Rescuing Drug Candidates……………………………………………………………………………… 199 Creating New Therapeutic Opportunities …………………………………………………………. 201 Therapeutic Delivery of DNA and RNA ………………………………………………………….. 202 Multifunctional Delivery Systems …………………………………………………………………… 203 Discussion ……………………………………………………………………………………………………. 204
APPENDIX F: TECHNOLOGY AND TERRORISM………………………………………….. 209 Technological Change Creating New Vulnerabilities and Targets……………………….. 209 Application of New Technologies Enabling or Hindering Terrorist Operations…….. 211 New Technologies Providing Potentially New Weapons for Terrorists………………… 211
APPENDIXG: SECTORALIMPACTSOFTECHNOLOGYAPPLICATIONS…….215 Hands-Free Computer Interface………………………………………………………………………. 215 In Silico Drug Research and Development……………………………………………………….. 215 Smart Textiles ………………………………………………………………………………………………. 215 Resistant Textiles ………………………………………………………………………………………….. 216 Electronic Transactions………………………………………………………………………………….. 216 Genetic Screening …………………………………………………………………………………………. 216 Genetically Modified Insects ………………………………………………………………………….. 216 Unconventional Transport ……………………………………………………………………………… 217 Commercial Unmanned Aerial Vehicles (UAVs) ……………………………………………… 217 Drug Development from Screening …………………………………………………………………. 217 Monitoring and Control for Disease Management …………………………………………….. 217 Enhanced Medical Recovery ………………………………………………………………………….. 217 Secure Data Transfer……………………………………………………………………………………… 218 Print-to-Order Books …………………………………………………………………………………….. 218 Therapies Based on Stem Cell Research and Development (R&D)……………………… 218 Chemical, Biological, Radiological, Nuclear (CBRN) Sensor Networks in Cities …. 218 CBRN Sensors on Emergency Response Technicians ……………………………………….. 219 Immunotherapy …………………………………………………………………………………………….. 219 Improved Treatments from Data Analysis………………………………………………………… 219 Smart Systems………………………………………………………………………………………………. 219 Hydrogen Vehicles………………………………………………………………………………………… 219 Implants for Tracking and Identification ………………………………………………………….. 219 Gene Therapy……………………………………………………………………………………………….. 220 Chip Implants for the Brain ……………………………………………………………………………. 220 Drugs Tailored to Genetics …………………………………………………………………………….. 220 Secure Video Monitoring……………………………………………………………………………….. 220 Biometrics as Sole Personal Identification ……………………………………………………….. 221 Hospital Robotics………………………………………………………………………………………….. 221 Military Nanotechnologies……………………………………………………………………………… 221 Military Robotics ………………………………………………………………………………………….. 221 Xenotransplantation ………………………………………………………………………………………. 221 Artificial Muscles and Tissues………………………………………………………………………… 222
xi

Genetically Modified Animals for Research and Development …………………………… 222 High-Tech Terrorism …………………………………………………………………………………….. 222 Memory-Enhancing Drugs……………………………………………………………………………… 222 “Super Soldiers”……………………………………………………………………………………………. 222 Genetic Selection of Offspring ……………………………………………………………………….. 222 Proxy Bot …………………………………………………………………………………………………….. 223 Quantum Computers ……………………………………………………………………………………… 223 Robotic Scientist …………………………………………………………………………………………… 223
APPENDIX H: INDEX OF SCIENCE AND TECHNOLOGY CAPACITY ………….. 225 APPENDIX I: 2005 FREEDOM RATING FOR 29 SELECTED COUNTRIES ……… 229 APPENDIX J: HDI RANK, SCORES, AND DEVELOPMENT INDICATOR STATISTICS FOR 29 SELECTED COUNTRIES ……………………………………………….. 231 APPENDIX K: KNOWLEDGE ASSESSMENT (UNWEIGHTED) FOR SELECTED COUNTRIES, RANKED BY INNOVATION SCORES ………………………………………. 235 References……………………………………………………………………………………………………….. 239
xii

Figures
Figure S.1 Selected Countries’ Capacity to Acquire the Top 16 Technology
Applications ……………………………………………………………………………………. xxii
Figure S.2 Selected Countries’ Capacity to Implement the Top 16 Technology Applications …………………………………………………………………………………… xxiii
Figure 3.1 Selected Countries’ Capacity to Acquire the Top 16 Technology Applications……………………………………………………………………………………… 68
Figure 3.2 Selected Countries’ Capacity to Implement the Top 16 Technology Applications……………………………………………………………………………………… 96
Figure 3.3 Summary of Selected Countries’ Capacity to Acquire and Implement the
Top 16 Technology Applications ………………………………………………………… 98
Figure 3.4 Selected Countries’ Capacity to Acquire Relevant Technology Applications for Rural Economic Development ……………………………………………………… 100
Figure 3.5 Selected Countries’ Capacity to Implement Relevant Technology
Applications for Rural Economic Development…………………………………… 101
Figure 3.6 Comparing Selected Countries’ Capacity to Acquire and Implement
Relevant Technology Applications for Rural Economic Development …… 103
Figure 3.7 Selected Countries’ Capacity to Acquire Relevant Technology Applications for Promoting Economic Growth and International Commerce……………… 104
Figure 3.8 Selected Countries’ Capacity to Implement Relevant Technology
Applications for Promoting Economic Development and International Commerce………………………………………………………………………………………. 106
Figure 3.9 Comparing Selected Countries’ Capacity to Acquire and Implement
Relevant Technology Applications for Promoting Economic Growth and International Commerce …………………………………………………………………… 107
Figure 3.10 Selected Countries’ Capacity to Acquire Relevant Technology
Applications for Improving Public Health ………………………………………….. 109
Figure 3.11 Selected Countries’ Capacity to Implement Relevant Technology Applications for Improving Public Health ………………………………………….. 110
Figure 3.12 Comparing Selected Countries’ Capacity to Acquire and Implement
Relevant Technology Applications for Improving Public Health …………… 111
Figure 3.13 Selected Countries’ Capacity to Acquire Relevant Technology
Applications for Improving Individual Health …………………………………….. 113
Figure 3.14 Selected Countries’ Capacity to Implement Relevant Technology Applications for Improving Individual Health …………………………………….. 114
Figure 3.15 Selected Countries’ Capacity to Acquire and Implement Relevant Technology Applications for Improving Individual Health …………………… 115
Figure 3.16 Selected Countries’ Capacity to Acquire Relevant Technology Applications for Reducing Resource Use and Improving Environmental Health ………… 117
xiii

Figure 3.17 Selected Countries’ Capacity to Implement Relevant Technology Applications for Reducing Resource Use and Improving Environmental Health…………………………………………………………………………………………….. 118
Figure 3.18 Comparing Selected Countries’ Capacity to Acquire and Implement
Relevant Technology Applications for Reducing Resource Use and Improving Environmental Health ………………………………………………………. 119
Figure 3.19 Selected Countries’ Capacity to Acquire Relevant Technology
Applications for Strengthening the Military and Warfighters of the Future 120
Figure 3.20 Selected Countries’ Capacity to Implement Relevant Technology Applications for Strengthening the Military and Warfighters of the Future 122
Figure 3.21 Selected Countries’ Capacity to Acquire and Implement Relevant Technology Applications for Strengthening the Military and Warfighters
of the Future……………………………………………………………………………………. 123
Figure 3.22 Selected Countries’ Capacity to Acquire Relevant Technology Applications for Strengthening Homeland Security and Improving Public Safety ………. 125
Figure 3.23 Selected Countries’ Capacity to Implement Relevant Technology Applications for Strengthening Homeland Security and Improving Public Safety …………………………………………………………………………………………….. 126
Figure 3.24 Comparing Selected Countries’ Capacity to Acquire and Implement
Relevant Technology Applications for Strengthening Homeland Security
and Improving Public Safety …………………………………………………………….. 127
Figure 3.25 Selected Countries’ Capacity to Acquire Relevant Technology
Applications That Might Affect Governance and Social Structure…………. 128
Figure 3.26 Selected Countries’ Capacity to Implement Technology Applications
That Might Affect Governance and Social Structure ……………………………. 130
Figure 3.27 Comparing Selected Countries’ Capacity to Acquire and Implement Technology Applications That Might Affect Governance and
Social Structure……………………………………………………………………………….. 131
Figure E.1 Range of Possible Future Developments for Nano-Enabled Drug
Delivery Systems …………………………………………………………………………….. 205
xiv

Tables
Table S.1 Technical and Implementation Feasibility of Illustrative 2020 Technology Applications ……………………………………………………………………………………… xix Table 1.1 Schematic Illustration of the Highly Interactive Nature of Technology Areas .. 6 Table 2.1 Integration Trend of Technology Developments………………………………………. 17 Table 2.2 Impact of 2020 Technology Applications ……………………………………………….. 18
Table 2.3 Technical and Implementation Feasibility of Illustrative 2020 Technology Applications ………………………………………………………………………………………. 34 Table 3.1 RAND S&T Capacity Index Scores for Selected Countries……………………….. 50 Table 3.2 Corruption Perception Index Scores for Selected Countries ………………………. 53 Table 3.3 Relevant Technology Applications for Highlighted Problems and Issues ……. 56 Table 3.4 Demands on Capacity of Top 16 Technology Applications……………………….. 65 Table 3.5 Selected Countries Across Regions of the World……………………………………… 65
Table 3.6 Groups of Selected Countries by Number of Top 16 Technology Applications …………………………………………………………………………………………………………. 66
Table 3.7 Drivers for Australia, Canada, Germany, Israel, Japan, South Korea, and the United States ……………………………………………………………………………………… 69
Table 3.8 Barriers for Australia, Canada, Germany, Israel, Japan, South Korea, and the United States ……………………………………………………………………………………… 72 Table 3.9 Technology Applications for China, India, Poland, and Russia………………….. 74 Table 3.10 Drivers for China, India, Poland, and Russia ………………………………………… 78 Table 3.11 Barriers for China, India, Poland, and Russia…………………………………………. 82
Table 3.12 Technology Applications for Brazil, Chile, Colombia, Indonesia, Mexico, South Africa, and Turkey…………………………………………………………………….. 85
Table 3.13 Drivers for Brazil, Chile, Colombia, Indonesia, Mexico, South Africa, and Turkey ………………………………………………………………………………………………. 88
Table 3.14 Barriers for Brazil, Chile, Colombia, Indonesia, Mexico, South Africa, and Turkey ………………………………………………………………………………………………. 90
Table 3.15 Barriers for Cameroon, Chad, the Dominican Republic, Egypt, Fiji,
Georgia, Iran, Jordan, Kenya, Nepal, and Pakistan …………………………………. 94 Table 4.1 Involvement of Technology Areas in Top 16 Technology Applications …… 135 Table D.1 A Comparison of Various Biometrics………………………………………………….. 182 Table E.1 Status in the FDA Pipeline of Nano-Enabled Reformulations………………….. 198 Table H.1 Country Index of Science and Technology Capacity ……………………………… 226 Table I.1 Freedom in the World 2005 Country Ratings …………………………………………. 229 Table J.1 Human Development Reports Statistics for 2005 ……………………………………. 232 Table K.1 Knowledge Economy Index Country Ratings ……………………………………….. 236
xv

xvi

mmary
We live in an era of increasing use of diverse technologies in all aspects of life, from ingestible radio transmitters and fluorescent quantum dots for medical diagnosis and treatment, to multifunctional cell phones that take digital photographs and receive and
3
transmit electronic mail. In a previous study, we concluded that the world is undergoing
a global technology revolution that is integrating developments in biotechnology, nanotechnology, materials technology, and information technology at an accelerating pace. Based on several parallel analyses of the state of globally important technology trends and how they are being constructed into specific applications (reviewed in Appendices A through F), we conclude in this report that the technology of 2020 will continue to integrate developments from multiple scientific disciplines in a “convergence” that will have profound effects on society. Examples of some of the integrated technology applications (TAs) that may be feasible by 2020 include:
• Personalized medicine and therapies
• Genetic modification of insects to control pests and disease vectors
• Computational (or “in-silico”) drug discovery and testing
• Targeted drug delivery through molecular recognition
• Biomimetic and function-restoring implants
• Rapid bioassays using bionanotechnologies
• Embedded sensors and computational devices in commercial goods
• Nanostructured materials with enhanced properties
• Small and efficient portable power systems
• Mass-producible organic electronics, including solar cells
• Smart fabrics and textiles
• Pervasive undetectable cameras and sophisticated sensor networks
• Large, searchable databases containing detailed personal and medical data
• Radio frequency identification (RFID) tracking of commercial products and
individuals
• Widespread bundled information and communications technologies, including
wireless Internet connectivity
• Quantum-based cryptographic systems for secure information transfer.
Technology Applications and Their Impact on Society
To evaluate the potential impact of TAs on society, we defined (see Table 2.2 in Chapter Two) a rough net assessment index composed of the sum of the number of societal sectors4 that the TA could affect and measures of technical feasibility, implementation
3 Philip S. Antón, Richard Silberglitt, and James Schneider, The Global Technology Revolution: Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015, Santa Monica, Calif.: RAND Corporation, MR-1307-NIC, 2001.
4 Including water, food, land, population, governance, social structure, energy, health, economic development, education, defense/conflict, and environment/pollution.
xvii

feasibility, and global diffusion. While this rough net assessment index does not measure the magnitude of impact on specific sectors, it does highlight feasible TAs with multi- sectoral impact and global reach. Of the 56 TAs that emerged in our review and analysis of the technical foresights described in the appendices, the following “top 16,” based on this net assessment index, formed a representative group that allowed evaluation of worldwide variation in technology implementation and its relevance to significant
5

  1. Cheap solar energy
  2. Rural wireless communications
  3. Communication devices for ubiquitous information access anywhere, anytime
  4. Genetically modified (GM) crops
  5. Rapid bioassays
  6. Filters and catalysts for water purification and decontamination;
  7. Targeted drug delivery
  8. Cheap autonomous housing
  9. Green manufacturing
  10. Ubiquitous RFID tagging of commercial products and individuals
  11. Hybrid vehicles
  12. Pervasive sensors
  13. Tissue engineering
  14. Improved diagnostic and surgical methods
  15. Wearable computers
  16. Quantum cryptography
    The TAs we identified vary significantly in assessed technical feasibility and
    implementation feasibility by 2020. Table S.1 shows the range of this variation on a
    matrix of 2020 technical feasibility versus 2020 implementation feasibility for all 56
    TAs. Technical feasibility is defined as the likelihood that the application is available for
    commercialization by 2020, which is based principally on the technical foresight papers
    in Appendices A through F. Implementation feasibility is the net of all nontechnical
    barriers and enablers, such as market demand, cost, infrastructure, policies, and
    6
    regulations. We based its assessment upon rough qualitative estimates of the size of the
    market for the application in 2020 and whether it raises significant public policy issues. In parentheses are the number of sectors that the technology can influence, and the designation G (for global) or M (for moderated) indicates our estimate (based on both the technical foresights and our discussions with regional experts at the RAND Corporation) of whether the application will be diffused globally in 2020 or will be moderated in its diffusion (i.e., restricted by market, business sector, country, or region).
    5 Including promoting rural economic development, promoting economic growth and international commerce, improving public health, improving individual health, reducing resource use and improving environmental conditions, strengthening the military and warfighters of the future, strengthening homeland security and public safety, and influencing governance and social structure.
    6 See additional discussions on the effects of markets and public policy issues on technology development in Anderson et al. (2000) and Hundley et al. (2003).
    societal problems and issues.
    xviii Table S.1 Technical and Implementation Feasibility of Illustrative 2020 Technology Applications
    Technical Feasibility
    (– –)
    (–)
    (+)
    (+ +)
    Highly Feasible
    • CBRN Sensors on ERT (2,G)
    • Genetic Screening (2,G) • GM Crops (8,M)
    • Pervasive Sensors (4,G)
    • Targeted Drug Delivery (5,M)
    • Ubiquitous Information Access (6,M) • Ubiquitous RFID Tagging (4,G)
    • Hybrid Vehicles (2,G)
    • Internet [for purposes of comparison]
    (+ +)
    (7,G)
    • Rapid Bioassays (4,G)
    • Rural Wireless Comms (7,G)
    Feasible (+)
    • GM Animals for R&D (2,M)
    • Unconventional Transport
    • Implants for Tracking and ID (3,M) • Xenotransplantation (1,M)
    • Cheap Solar Energy (10,M)
    • Drug Development from Screening (2,M) • Filters and Catalysts (7,M)
    • Green Manufacturing (6,M)
    • Monitoring and Control for Disease
    • Improved Diagnostic and Surgical Methods (2,G)
    Uncertain (U)
    • Commercial UAVs (6,M)
    • High-Tech Terrorism (3,M)
    • Military Nanotechnologies
    • Biometrics as sole ID (3,M)
    • CBRN Sensor Network in Cities (4,M)
    • Gene Therapy (2,G)
    • GM Insects (5,M)
    • Hospital Robotics (2,M)
    • Secure Video Monitoring (3,M)
    • Therapies based on Stem Cell R&D (5,M)
    • Enhanced Medical Recovery (3,M)
    • Immunotherapy (2,M)
    • Improved Treatments from Data Analysis
    • Electronic Transactions (2,G)
    • Hands-free Computer Interface (2,G) • In-silico drug R&D (2,G)
    • Resistant Textiles (2,G)
    • Secure Data Transfer (2,M)
    Unlikely (–)
    • Memory-Enhancing Drugs (3,M)
    • Chip Implants for Brain (4,M)
    • Drugs Tailored to Genetics (2,M)
    • Cheap Autonomous Housing (6,G) • Print-to-Order-Books (2,G)
    Highly Unlikely
    • Proxy-bot (3,M)
    • Quantum Computers (3,M)
    • Genetic Selection of Offspring (2,M)
    • Artificial Muscles and Tissue (2,M)
    • Hydrogen Vehicles (2,G)
    (– –)
    (5,M)
    Management (2,M)
    • Smart Systems (1,M)
    • Tissue Engineering (4,M)
    • Quantum Cryptography (2,G)
    Niche market only
    May satisfy a need for a medium or large market, but raises significant public policy issues
    Satisfies a strong need for a medium market and raises no significant public policy issues
    Satisfies a strong need for a large market and raises no significant public policy issues
    (2,G)
    • Military Robotics (2,G)
    (2,M)
    • Smart Textiles (4,M)
    • Wearable Computers (5,M)
    • Robotic Scientist (1,M)
    • Super Soldiers (2,M)

Regional and International Effects
We consulted experts within and outside RAND for their assessment of the impact of TAs in different regions of the world. The important problems and issues and relevant TAs in each region of the world are briefly discussed in Chapter Three. Motivated by the extent of regional variation, as well as significant differences between countries within regions, we identified 29 representative countries that allowed analysis of international variations in TAs and implementation across the globe. These countries were selected to reflect diversity in physical size, natural conditions, and location (e.g., large versus small, tropical versus temperate, land-locked versus island); population size and demographics (e.g., high birth rate versus low birth rate, rapidly aging versus youthful); level of economic development and types of economy (e.g., developed versus developing, market capitalist versus controlled economy); types of government (e.g., competitive liberal democracies versus authoritarian regimes); and science and technology (S&T) capacity levels (e.g., scientifically advanced versus scientifically lagging). While these criteria are not independent of each other, together they represent the principal geographical, social, economic, political, and scientific characteristics of international variation.
Within each region of the world, we identified several candidate countries. We then reviewed this initial country list to eliminate highly similar countries within a region. Countries across regions were then compared with each other to remove those that might be represented by others.
Capacity to acquire a TA does not necessarily equal capacity to implement, because the latter requires a threshold level of physical, human, and institutional capacity; financial resources; and the social, political, and sometimes even cultural environment necessary to maintain and sustain widespread use of the TA. Accordingly, we analyzed the drivers for and barriers to technology implementation in each of the 29 representative countries.
Figure S.1 shows the specific top 16 TAs that these selected countries have the capacity to acquire, as well as the drivers for, and barriers to, technology implementation that are present in each country.
Countries in blue boxes (and identified by dots in the country line icon) are economically and scientifically advanced and have the capacity to acquire 14 to 16 TAs. Countries in green boxes (with triangles in country line icons) have the capacity to acquire 10 to 12 TAs. Countries in yellow boxes (with diamonds in country line icons) have the capacity to acquire six to nine TAs. And countries in red boxes (with squares in country line icons) have the capacity to acquire one to five technology applications.
Through the 29 representative countries, Figure S.1 illustrates regional variations in capacity to acquire TAs. The most economically advanced and scientifically developed countries (shown in blue with a circle icon) represent North America, Western Europe, Australia, and the developed economies of East Asia (e.g., Japan and South Korea). Most of the rest of Asia and Eastern Europe are represented by the next level of capacity to acquire TAs (shown in green with a triangle icon). Latin America, parts of Southeast Asia, Turkey, and South Africa represent a lower level of capacity to acquire TAs (shown in yellow with a diamond icon). Finally, the countries with the least capacity to acquire TAs—most of Africa and the Middle East, as well as the Caribbean and Pacific Island countries—are represented by the countries shown in red with a square icon. Although
xx

our 29 selected countries have exceptions—for example, Georgia and Nepal (“red” countries in a “green” region) and Israel (“blue” country in a “red” region)—Figure S.1 provides a useful overall representation of regional variations across the globe of the capacity to acquire TAs.
Our assignments of drivers and barriers—based on the same data used to determine country capacity to acquire technologies, plus applied expert judgment on political, economic, and social conditions in these selected countries—indicate that countries most capable of acquiring TAs (the economically and scientifically advanced countries in the blue group) have the highest number of drivers and simultaneously the lowest number of barriers. By comparison, all selected countries in the green, yellow, and red groups have fewer drivers for, and face many more barriers to, technology implementation.
We used these data to analyze each country’s capacity to implement TAs, taking into account: (1) capacity to acquire, defined as the percentage of “top 16” TAs listed for that country in Figure S.1, (2) the percentage of the ten drivers for implementation applicable to that country, and (3) the percentage of the ten barriers to implementation
7
Figure S.2 shows the position of each of the 29 representative countries on a plot
8
for which the y-axis is the product of factors (1) and (2), and the x-axis is factor (3).
Both axes are shown as percentages, with the y-axis starting at zero (i.e., no capacity to acquire TAs or drivers) and ending at 100 (i.e., capacity to acquire all 16 TAs and all 10 drivers are applicable), and the x-axis starting at 100 (i.e., all 10 barriers are applicable) and ending at zero (i.e., no barriers are applicable). Countries are represented in Figure S.2 by the colors and icons established for them in Figure S.1. We note that Figure S.2 provides a first-order assessment of the capacity to implement TAs, in that we applied equal weighting to all TAs, drivers, and barriers, although we recognize that specific TAs, drivers, and barriers might be more significant in particular countries.
applicable to that country.
xxi
7 A detailed analysis of where on each driver-barrier continuum particular countries fall was beyond the scope of this study. However, we did identify which drivers and barriers are present in specific countries, so that the percentage of drivers and the percentage of barriers that apply are the appropriate quantitative metrics for a country at this level of analysis.
8 That is, the capacity to acquire scaled by the percentage of drivers. Multiplying capacity to acquire by the percentage of drivers is consistent with the view that the absence of drivers reduces the probability that the TAs a country can acquire will be implemented.

Figure S.1
Selected Countries’ Capacity to Acquire the Top 16 Technology Applications

The upper right-hand quadrant of Figure S.2 (shaded in blue) represents countries for which implementation of TAs is strongly driven by a high level of S&T capacity and the presence of many drivers but few barriers. The upper left-hand quadrant (shaded in green) represents countries for which implementation of TAs is strongly driven by a high level of S&T capacity and the presence of many drivers but for which many barriers are simultaneously present. The lower right-hand quadrant (shaded in yellow) represents countries for which implementation of TAs is not supported by a high level of S&T capacity and for which the number of both drivers and barriers is small. The lower left- hand quadrant (shaded in red) represents countries for which implementation of TAs is not supported by a high level of S&T capacity and for which the number of barriers exceeds the number of drivers.
xxiii

This approach is consistent with current research in international development that shows that multiple factors must be present to enable sustainable economic growth and development (e.g., infrastructure, good governance, healthy population, literacy,
9
political stability, sound banking and financial structure, dynamic innovation system). Figure S.2 indicates that the blue countries of Figure S.1 are most capable of implementing the TAs that they have the capacity to acquire. By comparison, the red countries of Figure S.1 have the least capacity to implement TAs that they have the capacity to acquire. It is interesting to note that the green and yellow countries of Figure S.1, except for China, appear in the lower left-hand (red) quadrant in Figure S.2. Having a smaller “tool kit” of technology applications than the blue countries, and possessing fewer drivers and more barriers, means that these green and yellow countries encounter greater challenges in attempting to implement TAs beyond laboratory research, demonstrations, or limited diffusion. We also note that no country appears in the lower right-hand (yellow) quadrant. This reflects the fact that reducing most of the barriers
listed above requires developing drivers as well as S&T capacity.
For the most economically and scientifically advanced countries, our assessment
indicates a strong capacity to acquire and implement the full range of technology applications to address a diversity of problems and issues. For the less economically and scientifically advanced nations, however, we observed substantial disparities between their capacity to acquire and implement TAs. For example, China, India, Poland, Brazil, and Chile are growing economically and scientifically. Increasing S&T capacity and growth in their institutional, human, and physical capacities will help to narrow the gap in technology implementation between them and the scientifically advanced countries. However, for those countries that have less dynamic economies and less scientific growth, and also suffer from political and social instability, implementation of technology applications will be very difficult, even when they have the capacity to acquire the relevant technology applications.
There is a group of problems and issues for which all countries show promising capacity to implement relevant TAs. For these problem areas—promoting rural economic development, improving public health, and reducing resource use and improving environmental health—the scientifically proficient green countries, China and India, have moved squarely into the upper half of quadrant charts similar to Figure S.2, with Poland not far behind. Moreover, several of the scientifically developing yellow countries show increased capacity—most notably Brazil, Chile, Mexico, and Turkey—which move up to occupy the same position as the scientifically proficient green country—Russia. Also, South Africa rises above the position occupied in Figure S.2 by Brazil, Chile, Mexico, and Turkey.
Therefore, the global technology revolution can be a major factor in addressing global issues of rural economic development, public and environmental health, and resource use. However, the barriers discussed above must be addressed, and these are most challenging for the scientifically lagging (red) countries, which have the greatest needs.
The overall capacity to implement technology applications, as indicated by Figure S.2, illustrates the following widely recognized trends:
9 See Kaufman and Kray (2003).
xxiv

• The technological preeminence of the scientifically advanced countries of North America, Western Europe, and Asia
• The emergence of China and India as rising technological powers, with the scientifically proficient countries of Eastern Europe, as represented by Poland, not far behind
• The wide variation in technological capability among the scientifically developing countries of Southeast Asia and Latin America
• The large scientific and technological gap between most of the countries of
10
The capacity to implement the TAs relevant to strengthening homeland security, public safety, and the military and warfighters of the future does not differ greatly from overall capacity for technology implementation. This observation implies that the global technology revolution is likely to support the emergence of China and India as military, as well as economic, powers.
For the remaining problem areas—promotion of economic growth and international commerce and influencing governance and social structure—all countries (except the most scientifically advanced) show less capacity to implement relevant TAs than their overall technology implementation capacity. This reflects the fact that TAs such as ubiquitous information access, pervasive sensors, tissue engineering, and wearable computers, which require a high level of infrastructure and institutional, physical, and human capacity, are unlikely to be widely adopted outside the most scientifically advanced countries. Thus, the greatest economic benefits stemming from such advanced technologies will likely be gained by these countries, although countries such as China and India may benefit via increased opportunities for manufacturing and services, respectively. As China and India improve their drivers, however, they will begin to reap the benefits seen by the scientifically advanced countries.
With respect to the influence of technology applications on governance and social structure, it appears that the combination of many barriers, few drivers, and capacity to acquire only a small number of the relevant TAs will moderate the impact of the global technology revolution in most of the developing world. However, individual TAs, such as cheap solar energy, rural wireless communications, and cheap autonomous housing, could have significant impact—for example, by simplifying household tasks and providing a gateway to the outside world, thus empowering women and changing their role in society—by providing opportunities for education and commerce in poor rural areas and by strengthening the hand of civil society groups and the general public in influencing government decisions and actions.
We note that our analysis provides an assessment of the average capacity of each country to implement the full range of TAs relevant to each problem and issue. This represents a floor on which individual countries will have the ability to focus their capacity development to create spikes in their capacity to acquire and implement TAs relevant to specific problems and issues of national priority. Countries with a greater
10 Notable exceptions to these regional trends among our selected countries are Israel, Turkey, and South Africa.
Africa, the Middle East, and Oceania and the rest of the world.
xxv

level of S&T capacity (countries in the green group and those leading the yellow group) will have the best opportunity to use their developing institutional, human, and physical capacity to exceed their assessed capacity to implement technology applications in selected areas, both civilian and military.
Conclusions
We draw the following conclusions from the data and analysis presented in this report.
Accelerated Technology Development Will Continue
Based on our technical foresights (e.g., see Appendices A through F and related references), we see no indication that the accelerated pace of technology development is abating, and neither is the trend toward multidisciplinarity nor the increasingly integrated nature of technology applications. Indeed, most of the top 16 TAs involve at least three of the technology areas addressed in this study, and many involve all four. Underlying all of this is the continuing trend toward globally integrated publications media, Internet connectivity, and scientific conferences, as well as the development and cross- fertilization of ever more sensitive and selective instrumentation.
Capability and Need Differences Are Driving Global Technology Revolution Differences Around the World
Because of vast differences in countries’ S&T capacity, as well as their institutional, human, and physical capacity required to develop drivers for, and overcome barriers to, implementing technology applications, the impact of the global technology revolution will show substantial regional and international variation. In addition, regional differences in needs will affect the market pull on technology applications.
The scientifically advanced countries of North America, Western Europe, and Asia (including Australia) are likely to gain the most, because they have the capacity to acquire and implement all of the top 16 TAs, as well as all those relevant to important problems and issues.
If they can address the multiple barriers to technology implementation (laws, policies, infrastructure, investment in research and development [R&D], education and literacy, and last but not least, governance and stability), emerging economies such as China and India in Asia and Brazil and Chile in Latin America will be able to use TAs to support continued economic growth and human development for their populations. China and India are emerging technological powers with the best opportunity to begin to approach the ability of the scientifically advanced countries to use technology applications to achieve national goals. Eastern Europe (represented in our analysis by Poland), as a region, appears to be poised next in line behind China and India. Russia’s capacity to implement TAs appears to be deteriorating, and the most advanced of the scientifically developing countries (represented in our analysis by Brazil, Chile, Mexico, and Turkey) appear to be almost overtaking this former superpower.
The scientifically lagging developing countries, because of the severity of such problems as disease, lack of clean water and sanitation, environmental degradation, and the lack of resources to address these problems, have the most to gain from implementing the 2020 TAs. However, this implementation will require substantial building of institutional, physical, and human capacity, which will no doubt be assisted by the efforts
xxvi

and sponsorship of international aid agencies and rich countries. But a necessary and enabling requirement will be improved governance and country stability.
Public Policy Issues May Strongly Influence Technology Implementation
The nature of a technology application can determine the politics that surround it. Many of the most controversial TAs involve biotechnology—for example, GM crops, GM insects, genetic screening, gene therapy, and genetic selection of offspring. Other TAs spark heated debate because of their potential implications for personal privacy and freedom. These include pervasive sensors, certain uses of RFID implants for tracking and identification of people, chip implants for the brain, and biometrics as sole personal identification. Genetic screening is a biotechnology application that also raises privacy concerns. For example, would individuals with certain genetic characteristics and established links to certain types of disease and illness be denied health insurance or jobs, or face other forms of discrimination?
Maintaining Science and Technology Capacity Requires Consideration and Action
Because of the accelerating pace of technology development and the rapid improvement of capacity to acquire and implement TAs in emerging economies, maintaining country position in relative capacity to implement TAs will require continuing efforts to ensure that, for example, laws, public opinion, investment in R&D, and education and literacy are drivers for, and not barriers to, technology implementation. In addition, infrastructure needed for desired TAs must be built, supported, and maintained. This, of course, is not a blanket advocacy for all TAs. Some ethical, safety, and public concerns require careful analysis and consideration. Just because we can do something does not always mean that we should.
Capacity Building Is an Essential Component of Development
The implementation of TAs to address the problems and issues that developing countries face is not primarily about technology, or even S&T capacity. The greater challenge is the development of institutional, human, and physical capacity, including effective and honest governance. Development is the consequence of improvements in such areas as economic growth, social equity, health and the environment, public safety and security, and good governance and stability. Thus, those countries that have the best performance in these indicators of development have the strongest institutional, human, and physical capacity to implement technology applications. Comparison of data in Appendix H on S&T capacity with data in Appendix J on human development shows that the scientifically advanced countries also rank highest on the Human Development Index. This suggests that less-developed countries hoping to benefit from implementation of TAs will have to improve their performance in many of the development indicators shown in Appendix J in order to build the requisite institutional, human, and physical capacity.
Public Policy Issues Relating to Technology Applications Will Engender Strong Public Debate
Some important TAs raise significant public policy issues that engender strong and sometimes conflicting reactions and opinions within and between countries, regions, and various ethnic, religious, cultural, and other interest groups. When raised, public policy
xxvii

issues need to be resolved if the full benefits of a TA are to be realized. These issues need to be debated in an environment that seeks to resolve conflicts. Such public debates, in addition to being based on sound data, need to be inclusive and sensitive to the country’s traditions, values, and cultures. In some cases, issues will remain and will moderate or even halt technology implementation—sometimes for good reasons (e.g., when safety concerns cannot be adequately addressed) and at other times simply because collective decisionmaking will decide what a particular society wants and does not want. Market forces will also moderate and vector the course of the global technology revolution, its technology applications, and their implementation. Predicting the net effect of these forces is literally predicting the future—wrought with all the difficulties of future predictions. However, these technology trends and applications have substantial momentum behind them and will be the focus of continued R&D, consideration, market forces, and debate. Many of these technologies will be applied in some guise or other, and the effects will be significant and astonishing, changing lives across the globe.

%d bloggers like this: